

CODES LAW Of RDBMS

Codd's 12 rules are a set of thirteen rules (numbered zero to twelve) proposed by
Edgar F. Codd, a pioneer of the relational model for databases, designed to
define what is required from a database management system in order for it to be
considered relational, i.e., an RDBMS.

Codd produced these rules as part of a personal campaign to prevent his vision
of the relational database being diluted, as database vendors scrambled in the
early 1980s to repackage existing products with a relational veneer. Rule 12 was
particularly designed to counter such a positioning. In fact, the rules are so strict
that all popular so-called "relational" DBMSs fail on many of the criteria.

The rules

Rule 0: The system must qualify as relational, as a database, and as a
management system.

For a system to qualify as a relational database management system
(RDBMS), that system must use its relational facilities (exclusively) to
manage the database.

Rule 1: The information rule:

All information in the database is to be represented in one and only one
way, namely by values in column positions within rows of tables.

Rule 2: The guaranteed access rule:

All data must be accessible with no ambiguity. This rule is essentially a
restatement of the fundamental requirement for primary keys. It says that
every individual scalar value in the database must be logically
addressable by specifying the name of the containing table, the name of
the containing column and the primary key value of the containing row.

Rule 3: Systematic treatment of null values:

The DBMS must allow each field to remain null (or empty). Specifically, it
must support a representation of "missing information and inapplicable
information" that is systematic, distinct from all regular values (for
example, "distinct from zero or any other number", in the case of numeric
values), and independent of data type. It is also implied that such
representations must be manipulated by the DBMS in a systematic way.

Rule 4: Active online catalog based on the relational model:

The system must support an online, inline, relational catalog that is
accessible to authorized users by means of their regular query language.
That is, users must be able to access the database's structure (catalog)
using the same query language that they use to access the database's
data.

Rule 5: The comprehensive data sublanguage rule:

The system must support at least one relational language that

1. Has a linear syntax
2. Can be used both interactively and within application programs,
3. Supports data definition operations (including view definitions), data

manipulation operations (update as well as retrieval), security and
integrity constraints, and transaction management operations
(begin, commit, and rollback).

Rule 6: The view updating rule:

All views that are theoretically updatable must be updatable by the
system.

Rule 7: High-level insert, update, and delete:

The system must support set-at-a-time insert, update, and delete
operators. This means that data can be retrieved from a relational
database in sets constructed of data from multiple rows and/or multiple
tables. This rule states that insert, update, and delete operations should
be supported for any retrievable set rather than just for a single row in a
single table.

Rule 8: Physical data independence:

Changes to the physical level (how the data is stored, whether in arrays or
linked lists etc.) must not require a change to an application based on the
structure.

Rule 9: Logical data independence:

Changes to the logical level (tables, columns, rows, and so on) must not
require a change to an application based on the structure. Logical data
independence is more difficult to achieve than physical data
independence.

Rule 10: Integrity independence:

Integrity constraints must be specified separately from application
programs and stored in the catalog. It must be possible to change such
constraints as and when appropriate without unnecessarily affecting
existing applications.

Rule 11: Distribution independence:

The distribution of portions of the database to various locations should be
invisible to users of the database. Existing applications should continue to
operate successfully :

1. when a distributed version of the DBMS is first introduced; and
2. when existing distributed data are redistributed around the system.

Rule 12: The nonsubversion rule:

If the system provides a low-level (record-at-a-time) interface, then that
interface cannot be used to subvert the system, for example, bypassing a
relational security or integrity constraint

